On Continuous Maps in Closure Spaces
نویسنده
چکیده
The aim of this paper is to study some properties of continuous maps in closure spaces.
منابع مشابه
$r$-fuzzy regular semi open sets in smooth topological spaces
In this paper, we introduce and study the concept of $r$-fuzzy regular semi open (closed) sets in smooth topological spaces. By using $r$-fuzzy regular semi open (closed) sets, we define a new fuzzy closure operator namely $r$-fuzzy regular semi interior (closure) operator. Also, we introduce fuzzy regular semi continuous and fuzzy regular semi irresolute mappings. Moreover, we investigate the ...
متن کاملON (L;M)-FUZZY CLOSURE SPACES
The aim of this paper is to introduce $(L,M)$-fuzzy closurestructure where $L$ and $M$ are strictly two-sided, commutativequantales. Firstly, we define $(L,M)$-fuzzy closure spaces and getsome relations between $(L,M)$-double fuzzy topological spaces and$(L,M)$-fuzzy closure spaces. Then, we introduce initial$(L,M)$-fuzzy closure structures and we prove that the category$(L,M)$-{bf FC} of $(L,M...
متن کاملQ-closure spaces
For a small quantaloid Q, a Q-closure space is a small category enriched in Q equipped with a closure operator on its presheaf category. We investigate Q-closure spaces systematically with specific attention paid to their morphisms and, as preordered fuzzy sets are a special kind of quantaloid-enriched categories, in particular fuzzy closure spaces on fuzzy sets are introduced as an example. By...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملState property systems and closure spaces: a study of categorical equivalence
We show that the natural mathematical structure to describe a physical entity by means of its states and its properties within the Geneva-Brussels approach is that of a state property system. We prove that the category of state property systems (and morphisms), SP, is equivalent to the category of closure spaces (and continuous maps), Cls. We show the equivalence of the ‘state determination axi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009